10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Finite Sample Analysis in Quantum Estimation

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Finite Sample Analysis in Quantum Estimation Synopsis

In this thesis, the author explains the background of problems in quantum estimation, the necessary conditions required for estimation precision benchmarks that are applicable and meaningful for evaluating data in quantum information experiments, and provides examples of such benchmarks.

The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable.

About This Edition

ISBN: 9784431561835
Publication date:
Author: Takanori Sugiyama
Publisher: Springer an imprint of Springer Japan
Format: Paperback
Pagination: 118 pages
Series: Springer Theses
Genres: Quantum physics (quantum mechanics and quantum field theory)
Condensed matter physics (liquid state and solid state physics)
Optical physics
Information theory
Scientific standards, measurement etc
Materials science
Algorithms and data structures