10% off all books and free delivery over £50
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

The Boundary Integral Equatio Method in Axisymmetric Stress Analysis Problems

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

The Boundary Integral Equatio Method in Axisymmetric Stress Analysis Problems Synopsis

The Boundary Integral Equation (BIE) or the Boundary Element Method is now well established as an efficient and accurate numerical technique for engineering problems. This book presents the application of this technique to axisymmetric engineering problems, where the geometry and applied loads are symmetrical about an axis of rotation. Emphasis is placed on using isoparametric quadratic elements which exhibit excellent modelling capabilities. Efficient numerical integration schemes are also presented in detail. Unlike the Finite Element Method (FEM), the BIE adaptation to axisymmetric problems is not a straightforward modification of the two- or three-dimensional formulations. Two approaches can be used; either a purely axisymmetric approach based on assuming a ring of load, or, alternatively, integrating the three-dimensional fundamental solution of a point load around the axis of rotational symmetry. Throughout this ~ook, both approaches are used and are shown to arrive at identi- cal solutions. The book starts with axisymmetric potential problems and extends the formulation to elasticity, thermoelasticity, centrifugal and fracture mechanics problems. The accuracy of the formulation is demonstrated by solving several practical engineering problems and comparing the BIE solution to analytical or other numerical methods such as the FEM. This book provides a foundation for further research into axisymmetric prob- lems, such as elastoplasticity, contact, time-dependent and creep prob- lems.

About This Edition

ISBN: 9783540160304
Publication date:
Author: Adib A Bakr
Publisher: Springer an imprint of Springer Berlin Heidelberg
Format: Paperback
Pagination: 213 pages
Series: Lecture Notes in Engineering
Genres: Classical mechanics
Engineering: general