This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
ISBN: | 9783319821405 |
Publication date: | 22nd April 2018 |
Author: | Thomas Duriez, Steven L Brunton, Bernd R Noack |
Publisher: | Springer an imprint of Springer International Publishing |
Format: | Paperback |
Pagination: | 211 pages |
Series: | Fluid Mechanics and Its Applications |
Genres: |
Engineering: Mechanics of fluids Automatic control engineering Classical mechanics Optical physics Artificial intelligence Computer hardware |