10% off all books and free delivery over £40 - Last Express Posting Date for Christmas: 20th December
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Artificial Intelligence and Visualization

View All Editions

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Artificial Intelligence and Visualization Synopsis

This book continues a series of Springer publications devoted to the emerging field of Integrated Artificial Intelligence and Machine Learning with Visual Knowledge Discovery and Visual Analytics that combine advances in both fields. Artificial Intelligence and Machine Learning face long-standing challenges of explainability and interpretability that underpin trust.  Such attributes are fundamental to both decision-making and knowledge discovery.  Models are approximations and, at best, interpretations of reality that are transposed to algorithmic form.   A visual explanation paradigm is critically important to address such challenges, as current studies demonstrate in salience analysis in deep learning for images and texts.  Visualization means are generally effective for discovering and explaining high-dimensional patterns in all high-dimensional data, while preserving data properties and relations in visualizations is challenging.  Recent developments, such as in General Line Coordinates, open new opportunities to address such challenges.

This book contains extended papers presented in 2021 and 2022 at the International Conference on Information Visualization (IV) on AI and Visual Analytics, with 18 chapters from international collaborators.  The book builds on the previous volume, published in 2022 in the Studies in Computational Intelligence. The current book focuses on the following themes: knowledge discovery with lossless visualizations, AI/ML through visual knowledge discovery with visual analytics case studies application, and visual knowledge discovery in text mining and natural language processing.

The intended audience for this collection includes but is not limited to developers of emerging AI/machine learning and visualization applications, scientists, practitioners, and research students.  It has multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery, visual analytics, and text and natural language processing.  The book provides case examples for future directions in this domain.  New researchers find inspiration to join the profession of the field of AI/machine learning through a visualization lens.  

About This Edition

ISBN: 9783031465482
Publication date: 25th April 2024
Author: Boris Kovalerchuk, Kawa Nazemi, Razvan Andonie, Nuno Datia, Ebad Bannissi
Publisher: Springer an imprint of Springer Nature Switzerland
Format: Hardback
Pagination: 503 pages
Series: Studies in Computational Intelligence
Genres: Artificial intelligence
Databases