10% off all books and free delivery over £40 - Last Express Posting Date for Christmas: 20th December
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Decision Tree and Ensemble Learning Based on Ant Colony Optimization

View All Editions

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Decision Tree and Ensemble Learning Based on Ant Colony Optimization Synopsis

This book not only discusses the important topics in the area of machine learning and combinatorial optimization, it also combines them into one. This was decisive for choosing the material to be included in the book and determining its order of presentation. Decision trees are a popular method of classification as well as of knowledge representation. At the same time, they are easy to implement as the building blocks of an ensemble of classifiers. Admittedly, however, the task of constructing a near-optimal decision tree is a very complex process. The good results typically achieved by the ant colony optimization algorithms when dealing with combinatorial optimization problems suggest the possibility of also using that approach for effectively constructing decision trees. The underlying rationale is that both problem classes can be presented as graphs. This fact leads to option of considering a larger spectrum of solutions than those based on the heuristic. Moreover, ant colony optimization algorithms can be used to advantage when building ensembles of classifiers. This book is a combination of a research monograph and a textbook. It can be used in graduate courses, but is also of interest to researchers, both specialists in machine learning and those applying machine learning methods to cope with problems from any field of R&D.

About This Edition

ISBN: 9783030067168
Publication date: 14th February 2019
Author: Jan Kozak
Publisher: Springer Nature Switzerland AG
Format: Paperback
Pagination: 159 pages
Series: Studies in Computational Intelligence
Genres: Artificial intelligence