"We show that a large class of maximally degenerating families of n-dimensional polarized varieties comes with a canonical basis of sections of powers of the ample line bundle. The families considered are obtained by smoothing a reducible union of toric varieties governed by a wall structure on a real n-(pseudo-)manifold. Wall structures have previously been constructed inductively for cases with locally rigid singularities [Gross and Siebert, From real affine geometry to complex geometry (2011)] and by Gromov-Witten theory for mirrors of log Calabi-Yau surfaces and K3 surfaces [Gross, Pandharipande and Siebert, The tropical vertex ; Gross, Hacking and Keel, Mirror symmetry for log Calabi-Yau surfaces (2015); Gross, Hacking, Keel, and Siebert, Theta functions and K3 surfaces (In preparation)]. For trivial wall structures on the n-torus we retrieve the classical theta functions. We anticipate that wall structures can be constructed quite
ISBN: | 9781470452971 |
Publication date: | 30th November 2022 |
Author: | Mark Gross |
Publisher: | American Mathematical Society |
Format: | Paperback |
Pagination: | 103 pages |
Series: | Memoirs of the American Mathematical Society |
Genres: |
Algebraic geometry |