10% off all books and free delivery over £50
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Geometric Optics for Surface Waves in Nonlinear Elasticity

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Geometric Optics for Surface Waves in Nonlinear Elasticity Synopsis

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as ``the amplitude equation'', is an integrodifferential equation of nonlocal Burgers type. The authors begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions $u^{\varepsilon} $ to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength $\varepsilon $, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to $u^{\varepsilon}$ on a time interval independent of $\varepsilon $. This paper focuses mainly on the case of Rayleigh waves that are pulses, which have profiles with continuous Fourier spectrum, but the authors' method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.

About This Edition

ISBN: 9781470440374
Publication date:
Author: JeanFrançois Coulombel, Mark Williams
Publisher: American Mathematical Society
Format: Paperback
Pagination: 143 pages
Series: Memoirs of the American Mathematical Society
Genres: Mathematical physics