10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Dualities and Representations of Lie Superalgebras

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Dualities and Representations of Lie Superalgebras Synopsis

This book gives a systematic account of the structure and representation theory of finite-dimensional complex Lie superalgebras of classical type and serves as a good introduction to representation theory of Lie superalgebras. Several folklore results are rigorously proved (and occasionally corrected in detail), sometimes with new proofs. Three important dualities are presented in the book, with the unifying theme of determining irreducible characters of Lie superalgebras. In order of increasing sophistication, they are Schur duality, Howe duality, and super duality. The combinatorics of symmetric functions is developed as needed in connections to Harish-Chandra homomorphism as well as irreducible characters for Lie superalgebras. Schur-Sergeev duality for the queer Lie superalgebra is presented from scratch with complete detail. Howe duality for Lie superalgebras is presented in book form for the first time. Super duality is a new approach developed in the past few years toward understanding the Bernstein-Gelfand-Gelfand category of modules for classical Lie superalgebras. Super duality relates the representation theory of classical Lie superalgebras directly to the representation theory of classical Lie algebras and thus gives a solution to the irreducible character problem of Lie superalgebras via the Kazhdan-Lusztig polynomials of classical Lie algebras.

About This Edition

ISBN: 9780821891186
Publication date:
Author: ShunJen Cheng, Weiqiang Wang
Publisher: American Mathematical Society
Format: Hardback
Pagination: 302 pages
Series: Graduate Studies in Mathematics
Genres: Algebraic geometry