10% off all books and free delivery over £40 - Last Express Posting Date for Christmas: 20th December
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

The Generalized Fitting Subsystem of a Fusion System

View All Editions

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

The Generalized Fitting Subsystem of a Fusion System Synopsis

The notion of a fusion system was first defined and explored by Puig, in the context of modular representation theory. Later, Broto, Levi, and Oliver extended the theory and used it as a tool in homotopy theory. The author seeks to build a local theory of fusion systems, analogous to the local theory of finite groups, involving normal subsystems and factor systems. Among other results, he defines the notion of a simple system, the generalized Fitting subsystem of a fusion system, and prove the L-balance theorem of Gorenstein and Walter for fusion systems. He defines a notion of composition series and composition factors and proves a Jordon-Hölder theorem for fusion systems.|The notion of a fusion system was first defined and explored by Puig, in the context of modular representation theory. Later, Broto, Levi, and Oliver extended the theory and used it as a tool in homotopy theory. The author seeks to build a local theory of fusion systems, analogous to the local theory of finite groups, involving normal subsystems and factor systems. Among other results, he defines the notion of a simple system, the generalized Fitting subsystem of a fusion system, and prove the L-balance theorem of Gorenstein and Walter for fusion systems. He defines a notion of composition series and composition factors and proves a Jordon-Hölder theorem for fusion systems.

About This Edition

ISBN: 9780821853030
Publication date: 28th February 2011
Author: Michael Aschbacher
Publisher: American Mathematical Society
Format: Paperback
Pagination: 110 pages
Series: Memoirs of the American Mathematical Society
Genres: Algebra