10% off all books and free delivery over £50
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Fine Regularity of Solutions of Elliptic Partial Differential Equations

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Fine Regularity of Solutions of Elliptic Partial Differential Equations Synopsis

The primary objective of this book is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second-order elliptic quasilinear equations in divergence form. The structure of these equations allows coefficients in certain $L^{p}$ spaces, and thus it is known from classical results that weak solutions are locally Holder continuous in the interior. Here it is shown that weak solutions are continuous at the boundary if and only if a Wiener-type condition is satisfied. This condition reduces to the celebrated Wiener criterion in the case of harmonic functions. The work that accompanies this analysis includes the 'fine' analysis of Sobolev spaces and a development of the associated nonlinear potential theory.The term 'fine' refers to a topology of $\mathbf R^{n}$ which is induced by the Wiener condition. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The regularity of the solution is given in terms involving the Wiener-type condition and the fine topology. The case of differential operators with a differentiable structure and $\mathcal C^{1,\alpha}$ obstacles is also developed. The book concludes with a chapter devoted to the existence theory, thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.

About This Edition

ISBN: 9780821803356
Publication date:
Author: Jan MalÔy, William P Ziemer
Publisher: American Mathematical Society
Format: Hardback
Pagination: 291 pages
Series: Mathematical Surveys and Monographs
Genres: Differential calculus and equations