10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schrödinger Equations Synopsis

This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec- ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man- ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work.

About This Edition

ISBN: 9780387949253
Publication date:
Author: Charles Li, Stephen Wiggins
Publisher: Springer an imprint of Springer New York
Format: Hardback
Pagination: 170 pages
Series: Applied Mathematical Sciences
Genres: Topology
Calculus and mathematical analysis
Geometry