10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Privacy Preservation in IoT: Machine Learning Approaches

View All Editions

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Privacy Preservation in IoT: Machine Learning Approaches Synopsis

This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner. The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions. Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.

About This Edition

ISBN: 9789811917967
Publication date: 28th April 2022
Author: Youyang Qu, Longxiang Gao, Shui Yu, Yong Xiang
Publisher: Springer Verlag, Singapore
Format: Paperback
Pagination: 119 pages
Series: SpringerBriefs in Computer Science
Genres: Privacy and data protection
Machine learning
Electrical engineering
Data mining