This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems.
Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites withaccount of chemical shrinkage.
The author expansively compares modeling results with experimental data, and readers will find unique experimental results on mechanical and thermal properties of composites under temperatures up to 3000 K. Chapters show how the behavior of composite shells under high temperatures is simulated by the finite-element method and so cylindrical and axisymmetric composite shells and composite plates are investigated under local high-temperature heating. < The book will be of interest to researchers and to engineers designing composite structures, and invaluable to materials scientists developing advanced performance thermostable materials.
ISBN: | 9789401774925 |
Publication date: | 28th January 2016 |
Author: | Yu I Dimitrienko |
Publisher: | Springer an imprint of Springer Netherlands |
Format: | Hardback |
Pagination: | 434 pages |
Series: | Solid Mechanics and Its Applications |
Genres: |
Engineering: Mechanics of solids Numerical analysis Condensed matter physics (liquid state and solid state physics) Ceramic and glass technology Materials science Thermodynamics and heat |