10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

The Infinite in Mathematics

View All Editions (2)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

The Infinite in Mathematics Synopsis

The main item in the present volume was published in 1930 under the title Das Unendliche in der Mathematik und seine Ausschaltung. It was at that time the fullest systematic account from the standpoint of Husserl's phenomenology of what is known as 'finitism' (also as 'intuitionism' and 'constructivism') in mathematics. Since then, important changes have been required in philosophies of mathematics, in part because of Kurt Godel's epoch-making paper of 1931 which established the essential in- completeness of arithmetic. In the light of that finding, a number of the claims made in the book (and in the accompanying articles) are demon- strably mistaken. Nevertheless, as a whole it retains much of its original interest and value. It presents the issues in the foundations of mathematics that were under debate when it was written (and in some cases still are); , and it offers one alternative to the currently dominant set-theoretical definitions of the cardinal numbers and other arithmetical concepts. While still a student at the University of Vienna, Felix Kaufmann was greatly impressed by the early philosophical writings (especially by the Logische Untersuchungen) of Edmund Husser!' He was never an uncritical disciple of Husserl, and he integrated into his mature philosophy ideas from a wide assortment of intellectual sources. But he thought of himself as a phenomenologist, and made frequent use in all his major publications of many of Husserl's logical and epistemological theses.

About This Edition

ISBN: 9789027708489
Publication date:
Author: Felix Kaufmann
Publisher: Springer an imprint of Springer Netherlands
Format: Paperback
Pagination: 237 pages
Series: Vienna Circle Collection
Genres: Philosophy of science
Mathematical logic
Mathematical foundations