10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Computational Genetic Regulatory Networks

View All Editions (2)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Computational Genetic Regulatory Networks Synopsis

Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth.

Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization.

Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve.

In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting from a single cell interacting with its environment, eventually including a changing local neighbourhood of other cells.

These methods may help us understand the genesis, organization, adaptive plasticity, and evolvability of differentiated biological systems, and may also provide a paradigm for transferring these principles of biology's success to computational and engineering challenges at a scale not previously conceivable.

About This Edition

ISBN: 9783642448058
Publication date:
Author: Johannes F Knabe
Publisher: Springer an imprint of Springer Berlin Heidelberg
Format: Paperback
Pagination: 122 pages
Series: Studies in Computational Intelligence
Genres: Artificial intelligence