Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.
ISBN: | 9783642221750 |
Publication date: | 20th August 2011 |
Author: | Kasthurirangan Gopalakrishnan, Siddhartha Kumar Khaitan, Soteris Kalogirou |
Publisher: | Springer an imprint of Springer Berlin Heidelberg |
Format: | Hardback |
Pagination: | 304 pages |
Series: | Studies in Fuzziness and Soft Computing |
Genres: |
Artificial intelligence Alternative and renewable energy sources and technology Environmental science, engineering and technology |