10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Granular Neural Networks, Pattern Recognition and Bioinformatics

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Granular Neural Networks, Pattern Recognition and Bioinformatics Synopsis

This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,.

The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions forfuture research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.

About This Edition

ISBN: 9783319571133
Publication date:
Author: Sankar K Pal, Shubhra S Ray, Avatharam Ganivada
Publisher: Springer an imprint of Springer International Publishing
Format: Hardback
Pagination: 227 pages
Series: Studies in Computational Intelligence
Genres: Artificial intelligence
Computational biology / bioinformatics