Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.
ISBN: | 9783031013041 |
Publication date: | 6th April 2021 |
Author: | Esteban CalviñoLouzao, Eduardo GarcíaRío, Peter Gilkey, JeongHyeong Park, Ramón VázquezLorenzo |
Publisher: | Springer an imprint of Springer International Publishing |
Format: | Paperback |
Pagination: | 140 pages |
Series: | Synthesis Lectures on Mathematics & Statistics |
Genres: |
Mathematics Probability and statistics Maths for engineers |