10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Cause Effect Pairs in Machine Learning

View All Editions

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Cause Effect Pairs in Machine Learning Synopsis

This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause a change in atmospheric pressure, or vice versa?”) is here cast as a binary classification problem, to be tackled by machine learning algorithms.  Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a “causal mechanism”, in the sense that the values of one variable may have been generated from the values of the other.   This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.

About This Edition

ISBN: 9783030218126
Publication date: 5th November 2020
Author: Isabelle Guyon
Publisher: Springer Nature Switzerland AG
Format: Paperback
Pagination: 372 pages
Series: The Springer Series on Challenges in Machine Learning
Genres: Machine learning
Image processing
Computer vision
Pattern recognition