10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Asymptotic Analysis of Random Walks

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Asymptotic Analysis of Random Walks Synopsis

This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.

About This Edition

ISBN: 9781107074682
Publication date:
Author: A A Sobolev Institute of Mathematics, Russia Borovkov
Publisher: Cambridge University Press
Format: Hardback
Pagination: 450 pages
Series: Encyclopedia of Mathematics and its Applications
Genres: Probability and statistics
Stochastics
Mathematical modelling