10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik

View All Editions

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik Synopsis

An essential companion to M. Vishik's groundbreaking work in fluid mechanics

The incompressible Euler equations are a system of partial differential equations introduced by Leonhard Euler more than 250 years ago to describe the motion of an inviscid incompressible fluid. These equations can be derived from the classical conservations laws of mass and momentum under some very idealized assumptions. While they look simple compared to many other equations of mathematical physics, several fundamental mathematical questions about them are still unanswered. One is under which assumptions it can be rigorously proved that they determine the evolution of the fluid once we know its initial state and the forces acting on it. This book addresses a well-known case of this question in two space dimensions. Following the pioneering ideas of M. Vishik, the authors explain in detail the optimality of a celebrated theorem of V. Yudovich from the 1960s, which states that, in the vorticity formulation, the solution is unique if the initial vorticity and the acting force are bounded. In particular, the authors show that Yudovich's theorem cannot be generalized to the L^p setting.

About This Edition

ISBN: 9780691257525
Publication date: 13th February 2024
Author: Camillo De Lellis
Publisher: Princeton University Press
Format: Hardback
Pagination: 144 pages
Series: Annals of Mathematics Studies
Genres: Differential calculus and equations
Physics: Fluid mechanics
Mathematics