AN INTRODUCTION TO Wavelet Modulated Inverters
An authoritative guide to designing and constructing wavelet functions that accurately model complex circuits for better performance
This is the first book to provide details, analysis, development, implementation, and performances of wavelet modulated (WM) inverters, a novel technique that keeps power systems stable and minimizes energy waste while enhancing power quality and efficiency. Written by experts in the power electronics field, it provides step-by-step procedures to implement the WM technique for single- and three-phase inverters. Also presented are key sample performance results for the new WM power inverters for different load types, which demonstrate the inverters' simplicity, efficacy, and robustness.
Beginning with the fundamentals of inverter technology, the book then describes wavelet basis functions and sampling theory with particular reference to the switching model of inverters. From there, comprehensive chapters explain:
The book establishes, for the first time, a direct utilization of different concepts of the sampling theorem and signal processing in accurate modeling of the operation of single- and three-phase inverters. Figures are provided to help develop the basis of utilizing concepts of the sampling, signal processing, and wavelet theories in developing a new tool and technology for inverters. Also included are easy-to-follow mathematical derivations, as well as procedures and flowcharts to facilitate the implementation of the WM inverters. These items make this unique reference of great interest to academic researchers, industry-based researchers, and practicing engineers. It is ideally suited for senior undergraduate and graduate-level students in electrical engineering, computer engineering, applied signal processing, and power electronics courses.
ISBN: | 9780470610480 |
Publication date: | 22nd December 2010 |
Author: | S A Saleh, M Azizur Rahman |
Publisher: | Wiley-IEEE Press an imprint of Wiley |
Format: | Hardback |
Pagination: | 148 pages |
Series: | IEEE Press Series on Power Engineering |
Genres: |
Electronics and communications engineering |