10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Model Reduction Methods for Vector Autoregressive Processes

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Model Reduction Methods for Vector Autoregressive Processes Synopsis

1. 1 Objective of the Study Vector autoregressive (VAR) models have become one of the dominant research tools in the analysis of macroeconomic time series during the last two decades. The great success of this modeling class started with Sims' (1980) critique of the traditional simultaneous equation models (SEM). Sims criticized the use of 'too many incredible restrictions' based on 'supposed a priori knowledge' in large scale macroeconometric models which were popular at that time. Therefore, he advo- cated largely unrestricted reduced form multivariate time series models, unrestricted VAR models in particular. Ever since his influential paper these models have been employed extensively to characterize the underlying dynamics in systems of time series. In particular, tools to summarize the dynamic interaction between the system variables, such as impulse response analysis or forecast error variance decompo- sitions, have been developed over the years. The econometrics of VAR models and related quantities is now well established and has found its way into various textbooks including inter alia Llitkepohl (1991), Hamilton (1994), Enders (1995), Hendry (1995) and Greene (2002). The unrestricted VAR model provides a general and very flexible framework that proved to be useful to summarize the data characteristics of economic time series. Unfortunately, the flexibility of these models causes severe problems: In an unrestricted VAR model, each variable is expressed as a linear function of lagged values of itself and all other variables in the system.

About This Edition

ISBN: 9783540206439
Publication date:
Author: Ralf Brüggemann
Publisher: Springer an imprint of Springer Berlin Heidelberg
Format: Paperback
Pagination: 218 pages
Series: Lecture Notes in Economics and Mathematical Systems
Genres: Probability and statistics
Stochastics
Econometrics and economic statistics
Economics, Finance, Business and Management