10% off all books and free delivery over £40
Buy from our bookstore and 25% of the cover price will be given to a school of your choice to buy more books. *15% of eBooks.

Algebraic and Strong Splittings of Extensions of Banach Algebras

View All Editions (1)

The selected edition of this book is not available to buy right now.
Add To Wishlist
Write A Review

About

Algebraic and Strong Splittings of Extensions of Banach Algebras Synopsis

In this volume, the authors address the following: Let $A$ be a Banach algebra, and let $\sum\:\0\rightarrow I\rightarrow\mathfrak A\overset\pi\to\longrightarrow A\rightarrow 0$ be an extension of $A$, where $\mathfrak A$ is a Banach algebra and $I$ is a closed ideal in $\mathfrak A$. The extension splits algebraically (respectively, splits strongly) if there is a homomorphism (respectively, continuous homomorphism) $\theta\: A\rightarrow\mathfrak A$ such that $\pi\circ\theta$ is the identity on $A$. Consider first for which Banach algebras $A$ it is true that every extension of $A$ in a particular class of extensions splits, either algebraically or strongly, and second for which Banach algebras it is true that every extension of $A$ in a particular class which splits algebraically also splits strongly.These questions are closely related to the question when the algebra $\mathfrak A$ has a (strong) Wedderbum decomposition. The main technique for resolving these questions involves the Banach cohomology group $\mathcal H^2(A,E)$ for a Banach $A$-bimodule $E$, and related cohomology groups. Later chapters are particularly concerned with the case where the ideal $I$ is finite-dimensional. Results are obtained for many of the standard Banach algebras $A$.

About This Edition

ISBN: 9780821810583
Publication date:
Author: W G Badè, H G Dales, Z A Lykova
Publisher: American Mathematical Society
Format: Paperback
Pagination: 113 pages
Series: Memoirs of the American Mathematical Society
Genres: Algebra
Calculus and mathematical analysis